Composition and structure of the cloud forest on Mt. Delaco, Gau, Fiji

Gunnar Keppel1,2 & Nunia T. Thomas3,4

1Biology Division, School of Biological, Chemical and Environmental Sciences, Faculty of Science and Technology, University of the South Pacific, P.O. Box 1168, Suva, Fiji Islands. E-mail: gunnar.keppel@gmail.com.

2Current Address: School of Integrative Biology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.

3Institute of Applied Sciences, The University of the South Pacific, P.O. Box 1168, Suva, Fiji Islands. E-mail: nuniat@naturefiji.org. Current Address: Nature Fiji-Mareqeti Viti, P. O. Box 2048, Government Buildings, Suva, Fiji.

Abstract

The composition and structure of cloud forest on Mt. Delaco (715m), Gau, Fiji Islands, is investigated using a transect following a ridge. Diameter (dbh), height, epiphyte cover and distance to the nearest neighbour were measured for each plant of 5 or more cm in dbh. A total of 42 vascular species were identified. The canopy was 3-5m tall, with Alpinia boia reaching 7m in height. The tree fern Dicksonia brackenridgei dominated the vegetation, accounting for 56% of the total basal area. Rapanea myricifolia, Hedycarya dorstenoides and Ascarina diffusa were other common species. Epiphytes were abundant and epiphyte cover for most trees was more than 50%. The most common epiphytes were Nephrolepis tuberosa and Nephrolepis saligna, Collospermum montanum, Peperomia spp., mosses and filmy ferns (Hymenophyllaceae) were other common species. A species of Freycinetia was the dominant climber. There was a moderately strong correlation between epiphyte richness and dbh of the host species ($r = 0.59$). The limited literature on cloud forest in the tropical insular Pacific suggests that while many taxa are shared, the species composition may vary considerably on different mountains.
1. Introduction

The Fiji Islands are an oceanic island group located between longitudes 177°W and 177°E and latitudes 15° to 22°S. The islands cover an ocean territory of about 650,000 km², of which less than 3% are land area. Of the more than 500 islands that compose the Fiji archipelago, Viti Levu (10,338 km²) and Vanua Levu (5,535 km²) are the largest and constitute more than 80% of the total landmass (Figure 1). Taveuni (434 km²) and Kadavu (408 km²) are also of considerable size (Mueller-Dombois & Fosberg 1998). There are also many smaller islands, of which Gau with an area of 140 km² is the largest (Watling, 1986).

Cloud forest, also called upper montane forest or tropical montane cloud forest (TMCF), is very susceptible to climatic changes (Still et al., 1999). TMFC are characterised by stunted and gnarled tree growth, moss-covered trunks and abundance of tree ferns and epiphytes (Osborne, 2000). They experience a temperature range of 10°C to 20°C and non-seasonal total annual rainfall of more than 3,500 mm (Watling and Gillison, 1993). TMCF are also major interceptors of horizontal precipitation and hence of major importance in the hydrological cycle (Merlin and Juvik, 1993; Still et al., 1999; Hölscher et al., 2004; Holder, 2004).

The richness and abundance of epiphytes is greater in the TMCF than in other rain forest types (Wolf, 2003; Küper et al., 2004; Cardelús et al., 2006). Epiphyte diversity seems to increase with the diameter at breast height (dbh) of the host tree and is also related to bark characteristics such as bark thickness and water retention capacity (Mehltreter et al., 2005; Flores-Palacios and García-Francos, 2006). Larger epiphytes often create tiny biomes that have their own fauna and are important for the retention of atmospheric nutrients and as substrate for wildlife foraging (Nadkarni et al., 2004). While the persistent cloudiness and interception of cloud water favours epiphytes, it limits photosynthesis, partially explaining the stunted growth of TMCF trees (Letts and Mulligan, 2005). In Fiji, TMCF has a unique flora (Gibbs, 1909; Smith, 1979-1996) and has been identified as one of nine principal vegetation types, occurring at mountaintops and ridges above 600m near the coast and at those above 900m inland (Mueller-Dombois and Fosberg, 1998) or as low as 450m on smaller islands (Merlin and
Juvik, 1993). Fiji TMCF are restricted to higher islands and have to date only been reported from Viti Levu, Vanua Levu, Taveuni and Gau (Merlin and Juvik, 1993). In the TMCF on Mt Koroturanga (1,210m) on Taveuni, light intensity on the ridge top is reduced by 30% under cloud cover and average air temperature was about 10 °C lower at 1,200m compared to the lowlands (Ash, 1987).

Floristically, Fiji’s TMCF harbour endemic species that are restricted to high altitudes and because of the wet and cool conditions, including some members of otherwise temperate families, such as *Paphia vitiensis* Seem. (Ericaceae). In Taveuni, 23 species were unique to the TMCF and most of the common trees in the lowland and upland rainforest did not penetrate into this forest (Ash, 1987). Watling and Gillison (1993) noted the similarity of the Fijian TMCF to that of Papua New Guinea and New Zealand, but also that it is ecological unique in the superabundance of tree ferns (species of *Cyathea, Leptopteris*) and climbing panadanus (species of *Freycinetia*).

While TMCF in Central and South America has been extensively studied, those in the tropical Pacific and Asia have received comparatively little attention, with the exception of the relatively species-poor TMCF in Hawaii (Berlin *et al*., 2000; Santiago, 2000). Indeed, Ash’s (1987) account of TMCF on Taveuni remains the only published quantitative study on TMCF in the tropical insular Pacific outside Hawaii. This paper looks at the composition of cloud forest on Gau Island, the fifth largest island in Fiji. It aims to provide a preliminary species list for the TMCF of Gau and to relate this to TMCF in other Pacific countries. It also investigates the correlation between epiphytic richness and host tree dbh.
2. Materials and Methods

2.1 Study Site

Gau Island has an area of 140km2 with rugged topography and over 50% of its rainforest are believed to be still intact. Cloud forest is restricted to the vicinity of the two highest peaks of the island, Mt. Delaco (715m) and Mt. Delacoboni (705m), in the north of the island (Watling and Gillison, 1993). Although no climatic data is available for the island of Gau, the prevalent Southeast tradewinds have certainly the major influence on the climate, producing high rainfall areas in mountainous regions and creating rain-shadows on the leeward side of the island (Keppel, unpubl. data).
2.2 Field work

Because cloud forest is restricted to ridge tops of the highest mountains (Watling and Gillison, 1993), we used a modified version of the Wandering Quarter Method of vegetation sampling (Mueller-Dombois and Ellenberg, 2003), whereby we walked about 40m along a ridge top, measured the diameter at breast height (dbh) of host trees above 5cm dbh and recorded the cover of different epiphyte species using the Braun-Blanquet scale. We intended to sample a bigger area but after about 50m, there was a noticeable change in species composition. The specimens collected were identified and deposited at the South Pacific Regional Herbarium (SUVA).

3. Results

2.3 Flora

A total of 42 species were recorded, of which 17 (c. 40%) were endemic (table 1). The filmy ferns (Hymenophyllaceae) with 7 species (c. 17%) were the most diverse family, followed by the Davalliaceae and the orchids (Orchidaceae) with 4 species (c. 10%) each (see appendix 1). Peperomia attenuata var. roseipica (previously only known from two collections from mountains on Vanua Levu), Cyrtandra victoriae (previously assumed to be restricted to mountains and ridges of Viti Levu), and Hoya megalantha (previously collected from high mountains on Viti Levu, Vanua Levu, Taveuni and Kadavu) are for the first time reported from Gau. Mt. Delaco is the type locality for Ascarina diffusa and remains the only known locality for the species in Fiji.

Epiphytes accounted for almost half of the diversity (19 spp., 45%). Thirteen species (68%) of the epiphytes were ferns and fern allies, three (16%) were orchids, two pepperomias and one a member of the lily family. Trees and shrubs accounted for nine species (21%), lianas and hemiepiphytes for six species (14%) and terrestrial ferns (including two tree ferns) and herbs (including the only non-native species Clidemia hirta and the giant ginger Alpinia boia) for four (10%).
2.4 Vegetation

We counted 25 plants with a dbh greater than 5cm belonging to 9 species. The tree fern *Dicksonia brackenridgei* was the most common with 11 individuals (44%) and composing 56% of the total basal area. The vegetation is stunted with the canopy being about 3 to 5m in height (appendix 2). More than 70% of the plants with a dbh greater than 5cm have an epiphyte cover of more than 50% (values 4 and 5 on the Braun-Blanquet scale). The giant ginger, *Alpinia boia*, differs from other plant by growing slightly taller (to 7m) and having a low epiphyte cover (value 1 on the Braun-Blanquet scale).

Nephrolepis tuberosa (Davalliaceae) was the only epiphyte that was found on more than half of the 25 host trees studied (table 2). Other common epiphyte species were *Collospermum montanum* (Liliaceae), *Nephrolepis saligna* and two species in the genus *Peperomia* (Pepepromiaceae) and filmy ferns (Hymenophyllaceae). A species of *Freycinetia* (Pandanaceae) was the dominant climber, occurring on 12 of the 25 host trees, but could not be identified in the absence of flowers and fruits. *Epipremnum pinnatum* (Araceae) was found on eight of the host trees, *Psychotria parvula* (Rubiaceae) on three, while there was only a single plant of *Flagellaria indica* (Flagellariaceae) and *Hoya megalantha* (Asclepiadaceae).

A moderately strong correlation (n = 25, r = 0.59) was detected between the dbh of the host tree and the number of epiphytes. This relationship was somewhat stronger when only dicotyledonous trees were considered (n = 12, r = 0.67).

4. Discussion

Similar to Ash’s (1987) study on Mt. Koroturaga, Taveuni, the height of the canopy on Mt. Delaco ranges from 5-7m. Our results are the first to put quantitative values to the superabundance of tree ferns and *Freycinetia* described as characteristic for Fiji’s cloud forests by Watling and Gillison (1993). On Mt. Delaco tree ferns, *Dicksonia brackenridgei*, accounts for more than 50% of the basal area and *Freycinetia* is found on about half of all the host trees.

Epiphytes reach high abundance and diversity in TMCF (Küper et al., 2004; Cardelús et al., 2006) and in our case epiphyte diversity accounted for almost half of all the species recorded. Our data also
supports previous findings that epiphyte diversity increases with the dbh of the host tree (Flores-Palacios and García-Franco, 2006). Furthermore this correlation was stronger when tree ferns were excluded from the analysis ($r = 0.67$ versus $r = 0.59$ with tree ferns included), a phenomenon previously observed (Mehtreter et al., 2005).

Merlin and Juvik (1993) produced a list of “selected cloud forest taxa in the Pacific”, which included “some of the more important, common, and/or unique woody plants found in Pacific Island TMCF” (pg.158). However, the list intentionally omitted herbaceous taxa such as filmy ferns (Hymenophyllaceae), orchids (Orchidaceae), Collosspermum (Liliaceae) and Peperomia (Peperomiaceae), which are characteristic of Pacific Island TMCF. The tree fern Dicksonia (Dicksoniaceae) and the woody taxa Cyrtandra (Gesneriaceae) and Astronidium (Melastomataceae), which are common components of TMCF in Fiji and other Pacific countries (Brownlie, 1977; Whistler, 2002), were also not included in the list. We, therefore, present an expanded list (table 3) that includes the above-mentioned taxa. We have excluded Paphia (Ericaceae), which commonly occurs in the cloud forests of Fiji’s largest island, Viti Levu, but is absent from other islands in the insular Pacific (Smith, 1981).

When comparing the only two available species lists for cloud forests in Fiji, only Rapanea myricifolia (Myrisinaceae) was shared between the Mt. Koroturaga (Ash, 1988) and Mt. Delaco (this study). Mt. Silisili on Savai’i in Samoa (Schuster et al., 1999) and Mt. Popomanaseu on Guadalcanal in the Solomon Islands (Corner, 1969) also have very different species compositions. Limited similarity between cloud forests on different mountains has also been observed on three isolated mountains on the Caribbean coast of Colombia and Venezuela (Sugden, 1983; Merlin and Juvik, 1993).
Table 1. Summary of the classification, origin and distribution of the species identified.

<table>
<thead>
<tr>
<th></th>
<th>Indigenous</th>
<th>Endemic</th>
<th>Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferns & Fern allies</td>
<td>18</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Monocotyledons</td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Dicotyledons</td>
<td>13</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41</td>
<td>18</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Abundance of common epiphytes as estimated by the number of host trees (out of 25) occupied by each species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of host trees occupied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nephrolepis tuberosa</td>
<td>21</td>
</tr>
<tr>
<td>Collospermum montanum</td>
<td>11</td>
</tr>
<tr>
<td>Nephrolepis saligna</td>
<td>10</td>
</tr>
<tr>
<td>Peperomia lagiostigma var. lagiostigma</td>
<td>8</td>
</tr>
<tr>
<td>Hymenophyllaceae</td>
<td>6</td>
</tr>
<tr>
<td>Peperomia attenuata var. roseispica</td>
<td>6</td>
</tr>
<tr>
<td>Lindsaea pickeringii</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 3. List of important, common, and/or unique vascular cloud forest taxa in the Pacific. Plants newly added to an initial list by Merlin and Juvik (1993) are typed in bold.

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>GENERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecales</td>
<td>Ptychosperma</td>
</tr>
<tr>
<td>Chloranthaceae</td>
<td>Ascarina</td>
</tr>
<tr>
<td>Cunoniaceae</td>
<td>Weinmannia</td>
</tr>
<tr>
<td>Cyatheaceae</td>
<td>Cyathea</td>
</tr>
<tr>
<td>Dicksoniaceae</td>
<td>Dicksonia</td>
</tr>
<tr>
<td>Elaeocarpaece</td>
<td>Elaeocarpus</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>Vaccinium</td>
</tr>
<tr>
<td>Gesneriaceae</td>
<td>Cyrtandra</td>
</tr>
<tr>
<td>Hymenophylylaceae</td>
<td>Crepidomanes, Hymenophyllum, Trichomanes</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Collospermum</td>
</tr>
<tr>
<td>Melastomataceae</td>
<td>Astronidium, Medinilla</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Metrosideros</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>Dendrobium and other genera</td>
</tr>
<tr>
<td>Pandanaceae</td>
<td>Freycinetia</td>
</tr>
<tr>
<td>Peperomiaceae</td>
<td>Peperomia</td>
</tr>
</tbody>
</table>

Probably the most obvious conclusion of this study is the absence of good botanical inventory data and quantitative vegetation data for cloud forests in the tropical insular Southwest Pacific. Considering the threats posed by climate change, baseline surveys of these forests need to be considered a high priority because cloud forests are one of the most vulnerable ecosystems to a global rise in temperatures and associated changes in the location of cloud layers. This is especially true for
islands in the Southwest Pacific, which rarely exceed 2,000m and therefore do not allow for upward migration of this ecosystem (Loope and Giambelluca, 1998; Still et al., 1999).

References

Keppel, G. unpublished data. GK collected data on the climate, flora and vegetation of Gau islands during three separate visits with various colleagues between 2001 and 2007.

Sudgen, A.M. 1983. Determinants of species composition in some isolated neotropical cloud forest.

PTERIDOPHYTA

LYCOPSIDA

LYCOPSIDACEAE

Huperzia trifoliata (Copel.) J. Holuh
FILICOPSIDA

CULCITACEAE

Calochlaena straminea (Labill.) M.D.Turner & R.A.White

DAVALLIACEAE

Davallia denticulata (Burm. f.) Mett. ex. Kuhn var. *elata* (G.Forst.) Mett. ex Kuhn

Davallia solida (G.Forst.) Sw. var. *fejeensis* (Hook.) Nootenboom (var. E)

Nephrolepis saligna Carr. E

Nephrolepis tuberosa (Bory ex Willd.) Presl. E

DICKSONIACEAE

Dicksonia brackenridgei Mett. E

HYMENOPHYLLACEAE

Hymenophyllum affine Brack. E

Hymenophyllum denticulatum Sw. E

Hymenophyllum fejeensis Brack. E

Hymenophyllum polyanthos (Sw.) Sw. E

Crepidomanes endlicherianum (C.Presl) P.S.Green E

Crepidomanes humile (G. Forst.) Bosch E

Trichomanes tahitense Nadeaud E

HYPOLEPIDACEAE

Histiopteris incisa (Thunb.) J.Sm. E

LINDSAEACEAE

Lindsea pickeringii (Brack.) Mett. ex Kuhn E

MARATTIACEAE
Marattia smithii Mett. ex Kuhn

OSMUNDACEAE

Leptopteris wilkesiana (Brackenr.) C. Christ.

MAGNOLIOPHYTA

MONOCOTYLEDONES

ARACEAE

Epipremnum pinnatum (L.) Engl.

CYPERACEAE

Carex dietrichiae Boeck.

FLAGELLARIACEAE

Flagellaria indica L.

LILIACEAE

Collospermum montanum (Seem.) Skottsbg.

ORCHIDACEAE

Dendrobium mohlianum Reichenb. f.

Dendrobium tokai Reichenb. f.

Eria bulbophyloides C.Schweinf.

Malaxis lunata (Schlechter) Ames

PANDANACEAE

Freycinetia sp.
ZINGIBERACEAE

Alpinia boia Seem.®

DICOTYLEDONES

AQUIFOLIACEAE

Ilex vitiensis A.Gray®

ASCLEPIADACEAE

Hoya megalantha Turrill®

CHLORANTHACEAE

Ascarina diffusa A.C.Sm.®

GESNERIACEAE

Cyrtandra victoriae Gillesp.®

LAURACEAE

Litsea vitiana (Meisn.) Benth. & Hook.®

MELASTOMATACEAE

Astonidium sp.®

Clidemia hirta (L.) D.Don

MONIMIACEAE

Hedycarya dorstenoides A.Gray.®

MYRSINACEAE

Rapanea myricifolia (A.Gray) Mez.®
MYRTACEAE

Syzygium eugenioides (Merr. & L.M.Perry) Biffin & Craven^E

Metrosideros collina (J.R. & G.Forst.) A.Gray¹

PEPEROMIACEAE

Peperomia lasiostigma C.DC. var. *lasiostigma*^E

Peperomia attenuata Yuncker var. *roseispica*^E

RUBIACEAE

Psychotria parvula A.Gray^E

Appendix 2: Height, dbh and epiphyte cover for the different individuals within the 40m transect.

<table>
<thead>
<tr>
<th>Species</th>
<th>Height (m)</th>
<th>dbh (cm)</th>
<th>Epiphyte Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapanea myricifolia</td>
<td>3.5</td>
<td>6.9</td>
<td>3</td>
</tr>
<tr>
<td>Rapanea myricifolia</td>
<td>4.0</td>
<td>9.7</td>
<td>4</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>2.0</td>
<td>13.0</td>
<td>5</td>
</tr>
<tr>
<td>Rapanea myricifolia</td>
<td>3.0</td>
<td>15.0</td>
<td>3</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>2.0</td>
<td>14.0</td>
<td>5</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>3.5</td>
<td>13.0</td>
<td>5</td>
</tr>
<tr>
<td>Hedycarya dorstenoides</td>
<td>6.0</td>
<td>15.5</td>
<td>5</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>2.0</td>
<td>13.7</td>
<td>5</td>
</tr>
<tr>
<td>Litsea vitiana</td>
<td>5.0</td>
<td>14.0</td>
<td>5</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>2.0</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>Hedycarya dorstenoides</td>
<td>6.0</td>
<td>20.0</td>
<td>5</td>
</tr>
<tr>
<td>Species</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>2.5</td>
<td>13.3</td>
<td>5</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>3.0</td>
<td>31.6</td>
<td>5</td>
</tr>
<tr>
<td>Astronidium confertiflorum</td>
<td>3.0</td>
<td>7.7</td>
<td>5</td>
</tr>
<tr>
<td>Ascarina diffusa</td>
<td>5.0</td>
<td>13.9</td>
<td>4</td>
</tr>
<tr>
<td>Ascarina diffusa</td>
<td>5.0</td>
<td>13.3</td>
<td>5</td>
</tr>
<tr>
<td>Astronidium confertiflorum</td>
<td>5.0</td>
<td>7.0</td>
<td>3</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>3.0</td>
<td>14.6</td>
<td>4</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>4.0</td>
<td>19.5</td>
<td>5</td>
</tr>
<tr>
<td>Alpinia boia</td>
<td>7.0</td>
<td>8.0</td>
<td>1</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>3.0</td>
<td>11.0</td>
<td>3</td>
</tr>
<tr>
<td>Alpinia boia</td>
<td>7.0</td>
<td>6.9</td>
<td>1</td>
</tr>
<tr>
<td>Dicksonia brackenridgei</td>
<td>4.0</td>
<td>12.6</td>
<td>3</td>
</tr>
<tr>
<td>Syzygium eugenoides</td>
<td>5.0</td>
<td>12.7</td>
<td>5</td>
</tr>
<tr>
<td>Ilex vitiensis</td>
<td>6.0</td>
<td>17.9</td>
<td>5</td>
</tr>
</tbody>
</table>