Proxies of community production derived from the diel variability of particulate attenuation and backscattering coefficients in the northwest Mediterranean Sea

Morvan Barnes1,2 and David Antoine1,2,3,*

1 Sorbonne Universités, Université Pierre et Marie Curie, Laboratoire d’Océanographie de Villefranche, Observatoire Océanologique, Villefranche-sur-Mer, France
2 Centre National de la Recherche (CNRS), Laboratoire d’Océanographie de Villefranche, Observatoire Océanologique, Villefranche-sur-Mer, France
3 Department of Imaging and Applied Physics, Remote Sensing and Satellite Research Group, Curtin University, Perth, Australia

Abstract

A 6 yr time series of high frequency inherent optical property (IOP) measurements in the Mediterranean was used to derive information on the diel and seasonal variability of particulate production. Empirical relationships between particulate attenuation \((c_p)\), particulate backscattering \((b_{bp})\), and particulate organic carbon allowed calculation of estimates of net community production (NCP), daytime NCP (NCPd), and gross community production (GCP) from the diel variations in either IOP. Similar seasonal variations and good correlation \((r = 0.83, p < 0.001)\) between daily means of \(c_p\) and \(b_{bp}\) were observed, yet differences in the timing and amplitude of their diel cycles led to significant differences in their derived production metrics. Best agreement was obtained during bloom proliferation (44.1–66.7% shared variance) when all three production estimates were highest, while worst was during bloom decline. Best overall correlation was found for NCPd. Accordingly, only \(c_p\)-derived estimates reproduced predicted seasonal variations in community production and seasonality of “traditional” chlorophyll-based primary production models. Analysis of the diel cycles of “real-time” net community production \((NCP_h)\), determined from the first-derivative of either \(c_p\) or \(b_{bp}\), revealed ca. fourfold to eightfold lower daytime \(NCP_h\), twofold to fivelfold lower daily maximum \(NCP_h\), and twice as much intraseasonal variability relative to the mean amplitude of diel variations for \(b_{bp}\). Although the timing of maximum of \(c_p\)-derived \(NCP_h\) was consistently prior to solar noon, significant seasonal differences in the timing of maximum \(b_{bp}\)-derived \(NCP_h\) was observed. Particulate backscattering may be used to infer biogeochemical properties, while greater understanding of the diel cycles of \(b_{bp}\) is needed before \(b_{bp}\) can be used to investigate daily community production.

Ocean particle dynamics confer essential information regarding biogeochemical processes at a wide range of temporal and spatial scales (Stramski et al. 1999; Oubelkheir et al. 2005; Dall’Olmo et al. 2012). Inherent optical properties (IOPs) of oceanic waters, such as the particulate beam attenuation coefficient \((c_p)\) and the particulate backscattering coefficient \((b_{bp})\), have increasingly been used to investigate oceanic biogeochemical processes, to investigate phytoplankton dynamics, and to reduce uncertainties associated with carbon budgets (Sosik 2008). Development of nonintrusive instrumentation with a high ratio of data output to measurement effort has rendered optical sensors an attractive proposition for biogeochemical analyses. Empirical bio-optical relationships between IOPs and biogeochemical parameters have thus enabled higher resolution determinations of Case 1 biogeochemical variability from field measurements or remote sensing observations (Cetinic et al. 2012). These optical proxies have enabled measurements of particulate organic carbon \((POC)\) at higher temporal and spatial scales than are attainable with traditional discrete water sampling methods. Such data would allow us to overcome current limitations of a biogeochemically undersampled ocean (Claustre et al. 2010).

The particulate beam attenuation coefficient is defined as the sum of particulate absorption and scattering and can be considered an optical measure of the particulate pool. It is most sensitive to particles between 0.5 and 20 \(\mu m\) (Stramski and Kiefer 1991). It is now recognized as a useful proxy of POC concentration (Loisel and Morel 1998; Claustre et al. 1999). Observations of \(c_p\) variability have increased in recent years, including in the Mediterranean Sea (Oubelkheir and Sciandra 2008; Gernez et al. 2011). In comparison, the variability in particulate backscattering is less well known and poorly constrained (Antoine et al. 2011) despite \(b_{bp}\) showing closer affinity to remote sensing observations. The co-variability of \(b_{bp}\) and POC (Boss et al. 2004; Cetinic et al. 2012) or phytoplankton chlorophyll a (Martinez-Vicente et al. 2012) suggests that \(b_{bp}\) may also be a useful proxy for biogeochemical properties. Indeed \(b_{bp}\) and \(c_p\) show strong coherence across different environments (Westberry et al. 2010) despite the disputed role of phytoplankton in determining \(b_{bp}\) (Stramski et al. 2004). Several methods have been proposed for estimating higher biogeochemical quantities, such as ecophysiological rates and community carbon production from \(c_p\) (Gernez et al. 2011; Dall’Olmo et al. 2012), but whether these work for \(b_{bp}\) is yet to be shown.

Our understanding of the long-term spatiotemporal variability of the global particulate pool has improved markedly since the advent of remote sensing (Vantrepotte...
et al. 2011) and has highlighted the possible effects of climate oscillations on oceanic biology (Martinez et al. 2009). Yet our knowledge of smaller scale temporal variability is very limited, and recent efforts have sought to extend our understanding of diurnal variability of the particulate pool (Gernez et al. 2011; Loisel et al. 2011; Dall’Olmo et al. 2012). Diel variability of optical properties is a well-established phenomenon, resulting from cyclic solar forcing and upper mixed layer dynamics. However, the potential underlying mechanical causes are numerous and remain poorly understood. The diurnal c_p increase is related to photosynthetic organic production by phytoplankton (Siegel et al. 1989) and the associated increase in particle size and/or refractive index (Stramski and Reynolds 1993), as well as changes in phytoplankton type, physiology, and general community composition (Claustre et al. 2008; Oubelkheir and Sciandra 2008). The development of autonomous moored instruments provides novel opportunities to characterize diel variability over long temporal periods.

In this study, we make use of a 6 yr time series (2006–2011) of near continuous (every 15 min) optical measurements performed at the Bouée pour l’acquisition de séries optiques à long terme (BOUSSOLE) site in the northwestern Mediterranean Sea (Antoine et al. 2006, 2008). This builds on the work of Gernez et al. (2011) who used 2 yr of BOUSSOLE c_p data to examine seasonal variations in c_p-derived community production. Here, the different temporal scales of variability (from annual to diel) of c_p and b_{bp} are characterized and compared under varying environmental conditions. Relationships between biogeochemical variables are investigated under different trophic conditions. In a second step, the use of both c_p and b_{bp} toward the derivation of several community production related quantities is explored. Finally, the full diel cycles of net community production are analyzed and related to phytoplankton dynamics and their responses to environmental conditions.

Methods

Sampling strategy—The BOUSSOLE site is situated in Case 1 waters of the Ligurian Sea in the northwestern Mediterranean Sea (Fig. 1). The westward flowing Ligurian current dominates the physical advection, while the site shows marked seasonality in physical characteristics. Deep mixed layers (usually down to 400 m; occasionally > 1000 m) are consistently present during winter, whereas marked stratification occurs throughout summer. The onset of stratification between February and March is accompanied by a prominent spring bloom which is followed by marked oligotrophy.

To capture the concomitant variability in optical properties, an autonomous moored platform, operating in quasi-continuous mode, has been deployed at the BOUSSOLE site since September 2003. The platform measures radiometric quantities at two depths (4 and 9 m) as well as above the surface. Data acquisition occurs every 15 min and is represented by median data from 1 min long acquisitions. Two sister buoys are used with ca. 6 month rotations to permit calibration checks and serviced every month. Excessive biofouling is prevented by regular cleaning performed by divers every 2–4 weeks and by the use of copper and antifouling paint wherever possible on all instruments. Comparisons of data before and after cleaning allow for further quality controls resulting in the elimination of possibly corrupt observations. Monthly 0–400 m downcasts are also performed for acquisition of hydrological data including conductivity, temperature, and depth (CTD) measurements of temperature, complementary c_p measurements, discrete phytoplankton pigment analyses, and particulate absorption measurements. Optical measurements used here are the particulate beam attenuation coefficient c_p, the backscattering coefficient b_{bp}, and the photosynthetically available radiation (PAR).

Optical measurements—The transmittance (Tr, %) was measured at 660 nm with 25 cm pathlength Wetlabs C-star transmissometers (acceptance angle of 1.2°). At this wavelength the absorption of colored dissolved organic matter is assumed to be negligible (Bricaud et al. 1981). The particulate beam attenuation coefficient c_p was then calculated as

$$c_p(660) = - \frac{1}{0.25 \ln \left(\frac{Tr}{100} \right)}$$

Deployment length of each instrument on the BOUSSOLE buoy was between 4 and 12 months, and monthly CTD measurements of c_p were taken to 400 m depth. Three moored instruments were used across the time series, and each was factory calibrated before each deployment (with annual calibration for the CTD instrument) with deionized, ultrafiltered, ultraviolet screened water. Air and blocked beam calibrations were also checked prior to deployment. In situ dark measurements, where the beam is blocked by black neoprene covers, were used to check for significant deviation (but not to induce corrections). To harmonize the
c_p time series acquired with different instruments, the CTD measurements at 4 and 9 m were used as a reference, resulting in the removal of a fixed or variable bias from each deployment. Prior to CTD casts, instrument windows were cleaned with a few drops of methanol and optical lens paper, and a short 50 m cast is undertaken to wash the CTD–rosette system. Drift of the CTD measurements was corrected for using bottom data (average between 375–400 m), which are usually occupied by low particle concentration Levantine water (Oubelkheir et al. 2005) such that mean c_p at these depths equaled 0.055 m^{−1}.

The backscattering coefficient is calculated at 555 nm from the volume scattering function at 140° β(140), measured using two hydro-optics, biology, and instrumentation laboratories (HOBI Labs) Hydroscaf-2 and, from October 2007, two Hydroscaf-4 backscattering meters. Instruments are calibrated before and after each deployment following Maffione and Dana (1997), while dark measurements are performed in situ using black neoprene cap. Instruments operate at 1 Hz so that 60 measurements are collected during each of the 1 min acquisition sequences, the median of which is used as a representative value for β(140). We calculated b_{bp} following Maffione and Dana (1997):

\[
b_{bp} = 2\pi x_p (\beta(140) - \beta_w(140))
\]

where \(x_p = 1.13 \) and \(\beta_w(140) \) is computed following Zhang et al. (2009) based on temperature and salinity measurements and corrected for pathlength attenuation following Maffione and Dana (1997) using the beam attenuation coefficient, the total absorption coefficient derived from the inversion of the diffuse attenuation coefficient for downw ard irradiance (Kd) and the irradiance reflectance (R; see eqs. 12 and 13 in Morel et al. 2006). Above-water photosynthetically available radiation (PAR between 400 and 700 nm; \(\mu \)mol photons m^{−2} s^{−1}) was estimated by fitting the solar irradiance model of Gregg and Carder (1990) to seven discrete irradiance values measured by a seven band Satlantic OCI-200 radiometer mounted on top of the buoy.

Phytoplankton pigments—Water samples for phytoplankton pigments were collected monthly at 11 depths from 5 to 200 m using Niskin bottles. Samples at 5 and 10 m are used here. Seawater was filtered through 25 mm GF/F filters (0.7 \(\mu \)m porosity), stored in liquid nitrogen, and subsequently analyzed for phytoplankton pigments using high-performance liquid chromatography following Ras et al. (2008). A continuous record of mean daily chlorophyll \(a \) (Chl \(a \)) was generated by supplementing these data with those from ocean color sensors following Antoine et al. (2008).

Physical dynamics—Water temperature (°C) and salinity were measured with a Sea-Bird Electronics (SBE) 37-SI CTD installed at 9 m depth. Monthly vertical temperature and salinity profiles were performed using a SBE 911+ CTD equipped with a Di gi quartz Paroscientific pressure sensor and SBE 3 and SBE 4 temperature and conductivity sensors. Mixed layer depth (\(z_m \)) was determined using a density gradient criterion of 0.125 kg m^{−3} (Levitus 1982). Wind speed was measured on an hourly basis by a weather buoy two nautical miles from BOUSSOLE operated by Météo France. With our goal to characterize diel variations at BOUSSOLE, it was necessary to eliminate from consideration data where changes in optical properties could be due to strong horizontal or vertical advection. Days were selected for analysis only if sea surface temperature, salinity, buoy depth, and wind speed remained reasonably stable as documented by Gernez et al. (2011).

Characterization of diel variability in IOPs—The amplitude of diel variation in c_p (m^{−1}) and b_{bp} (m^{−1}; \(\Delta c_p \) and \(\Delta b_{bp} \), respectively) was determined as the difference between sunset and sunrise values (± 30 min averaged values) and are thus not necessarily the maximum diurnal change. Fractions of the day (\(k \)) are used, rather than hours, in order to allow comparison between days of varying photoperiod whereby \(k \) at sunrise, noon, sunset, and the next sunrise correspond to \(k = 0, 0.25, 0.5, \) and 1.

Net community and primary production—Particulate organic carbon (POC) was estimated from c_p and b_{bp} following empirical linear relationships established for the Mediterranean by Oubelkheir and Scandiara (2008; 1.78 m² g C^{−1}) and Loisel et al. (2001; 0.0266 m² g C^{−1}), respectively. Exact determination of net community production (NCP) cannot be derived from the diel changes in c_p or b_{bp}; only proxies of NCP or similar quantities can be inferred. Therefore, three metrics of daily community production were determined from the observed diel variations in POC (Fig. 2), each incorporating different biogeochemical processes and providing a different perspective on them.

(1) Net community production (NCP; mg C m^{−2} d^{−1}) is defined here as the difference between POC estimates from
sunrise to the following sunrise. It is a measure of the net fixation or loss of particulate organic carbon over 24 h. (2) Daytime net community production (NCPd; mg C m\(^2\) d\(^{-1}\)) was computed following Claustre et al. (2008; DΔPOC) as the daytime increase in POC (mg C m\(^{-2}\)) from sunrise to sunset. It accounts for the daytime carbon fixation and the daytime losses through respiration, grazing, and sinking. (3) An estimate of gross community production (GCP; mg C m\(^{-2}\) d\(^{-1}\)) was calculated as the difference between the daytime maximum POC and the theoretical sunset minimum POC, which solely takes into account community losses. Assuming equal community losses during daytime and nighttime, the theoretical sunset minimum is determined by applying the mean rate of POC decrease from the previous night (0.5 < k < 1) to the sunrise POC concentration. To account for potential differences in the timing of diel maxima of bbp and cp, the daytime maxima POC concentration is used rather than the sunset value.

In addition, shorter term variations of POC estimates are used to calculate a “real-time” net production (NCPh; mg C m\(^{-2}\) h\(^{-1}\)) representing the change in POC at 15 min intervals. To facilitate comparisons with primary production models, all community production data were depth-integrated to the depth of the euphotic zone following Gernez et al. (2011) assuming vertically homogenous DΔPOC. A similar assumption is validated by previous observations in open ocean waters (Siegel et al. 1989; Claustre et al. 2008) and is acceptable given the primary goal of comparing cp- and bbp-derived metrics. Likewise, it must also be noted that it was not possible to account for the effects of particle sinking on the proxies of community production.

Optically derived NCPd was compared with two standard chlorophyll-based models of primary production: the vertically generalized production model (PP\(_{VGPM}\); Behrenfeld and Falkowski 1997) and a semianalytical model (PP\(_{M91}\); Morel 1991; Antoine and Morel 1996). The calculation of PP\(_{VGPM}\) includes a measure of depth-integrated phytoplankton biomass, which is estimated from the product of ephotic depth and mean daily surface Chl a following Morel and Berthon (1989), as well as irradiance and a photoadaptive yield term, calculated from in situ BOUSSOLE sea surface temperature, and required to convert the estimated biomass into a photosynthetic rate. Mean daily Chl a concentration is determined from in situ BOUSSOLE pigment analyses (when available) combined with the SeaWiFs ocean color product as described in Antoine et al. (2008). For PP\(_{M91}\), biomass is also estimated from this surface Chl a, but irradiance is spectrally dependent (and corrected for cloud cover), while physiological parameters are defined and quantified in Morel et al. (1996). Primary production and net community production may represent different processes, but comparisons allow for a greater understanding of seasonal phytoplankton dynamics around the BOUSSOLE site.

Results

Temporal variation of optical properties—Seasonal hydrographical and biological characteristics of the BOUS...
Mean percentage variations from sunrise were significantly greater for \(cp \) \((\Delta cp)\) than for \(bbp \) \((\Delta bbp)\). The timing of the daily peak in \(bbp \), during decline, oligotrophy, and mixing seasons, was considerably earlier than that of \(cp \), and thus \(bbp \) began decreasing longer before sunset than \(cp \). Combined, these processes resulted in smaller overall increases in \(bbp \) from sunrise to sunset. During the vernal bloom, IOP values at sunset were on average 23.4% greater than at sunrise for \(cp \) but just 11.9% greater for \(bbp \), while outside of the bloom \(bbp \) values increased during daytime by 4.1–9.2%, whereas \(cp \) increased by 13–14.4%. In addition to the two differences mentioned above, statistical analysis suggested a greater seasonal dependency of the diel variations of \(cp \) than of \(bbp \) (Tables 2 and 3). Significant differences were found between the sunrise–sunset increase in \(cp \) during the bloom and that during the three other seasons, both in terms of percentage and absolute increase. Yet, despite significant differences between the sunrise–sunset percentage increase of \(bbp \) during the bloom and that during collapse \((t = 2.17, \text{degrees of freedom} (df) = 74, \text{Table 1. Selection criteria and mean biogeochemical characteristics of the four seasons differentiated for the BOUSSOLE time series (na indicating non applicable entries).}

<table>
<thead>
<tr>
<th>Season</th>
<th>No. of days</th>
<th>Criteria</th>
<th>Mean characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>135</td>
<td>cp >80</td>
<td>(cp : 0.51(\pm 0.24)) (bbp : 0.0013(\pm 0.0003))</td>
</tr>
<tr>
<td>Bloom</td>
<td>63</td>
<td>>0.6</td>
<td>(cp : 0.16(\pm 0.09)) (bbp : 0.0022(\pm 0.0008))</td>
</tr>
<tr>
<td>Decline</td>
<td>74</td>
<td>>0.6</td>
<td>(cp : 0.38(\pm 0.18)) (bbp : 0.0020(\pm 0.0007))</td>
</tr>
<tr>
<td>Oligotrophy</td>
<td>532</td>
<td><0.6</td>
<td>(cp : 0.14(\pm 0.04)) (bbp : 0.0010(\pm 0.0003))</td>
</tr>
</tbody>
</table>

Fig. 3. Time series of (A) sea surface temperature (°C), \(Z_m \) (m), PAR (mol photons m\(^{-2}\) d\(^{-1}\)), and Chl \(a \) (mg m\(^{-3}\)); (B) daily mean (dark line) and minimum and maximum (light lines) \(cp \); (C) daily mean and minimum and maximum \(bbp \). Also shown are the seasons derived from Chl \(a \) and \(Z_m \) (A, lower panel) upper dark, bloom; upper light, decline; lower dark, mixing; lower light, oligotrophy, and the median (dashed line) and (B, C) the 10% and 90% percentiles for \(cp \) and \(bbp \) across the time series.
BOUSSOLE site undergoes strong seasonal changes in phytoplankton size structure with larger cells dominating during the spring bloom, nanoplankton and picoplankton dominating from May to June, nanoplankton and picoplankton dominating from August to December, and with mixed communities dominating during January–February (Fig. 5C). In the spring, when microplankton dominate, IOP-based estimates of phytoplankton biomass may therefore yield relatively higher measurements than Chl a–based estimates of phytoplankton biomass.

Overall, c_p and b_{bp} were strongly correlated ($r = 0.83, p < 0.001$) with a power-law relationship describing 68% of the variability between IOPs (Fig. 5D). However, clear differences were observed between oligotrophy–mixing and bloom–collapse. Although only encompassing a narrow and low range in values, a steeper slope in the relationship between b_{bp} and c_p was found during oligotrophy and mixing (ca. 0.0069 vs. 0.0045 during blooms). Thus, with increasing phytoplankton biomass, b_{bp} values increase more slowly than c_p.

Daytime net community production—In general, mean seasonal variations of c_p and b_{bp} are comparable both in terms of the timing of the spring maximum (mid-March to late-April) and in terms of relative amplitude of seasonal changes (Fig. 6A,B). Outside of the spring peak, substantially greater interannual and intraseasonal variations were observed for mean daily b_{bp} than for c_p. Daily means, however, did not necessarily reflect the amplitude of diel variations equally in both IOPs. Mean seasonal cycles of net community production, NCP, were similar for estimates based on c_p and b_{bp} with a mid-March annual peak (0.23 and 0.05 g C m$^{-2}$ d$^{-1}$, respectively) and a mid-April trough (−0.23 and −0.14 g C m$^{-2}$ d$^{-1}$, respectively; Fig. 6C,D). However, much greater variability was observed for NCP[c_p] than NCP[b_{bp}] particularly during March–April. The daytime net community production, NCPd, calculated from c_p also showed the greatest amplitude of variations during the spring bloom. During this time NCPd[c_p] varied between −5.9 and 7.2 g C m$^{-2}$ d$^{-1}$, and the 10 d running mean peaked at 1.06 g C m$^{-2}$ d$^{-1}$ (Fig. 6E). Annual mean NCPd[c_p] was 0.63 g C m$^{-2}$ d$^{-1}$, while the mean during March–April was 0.97 g C m$^{-2}$ d$^{-1}$. In comparison, seasonal variations in NCPd[b_{bp}] were greatly reduced with no greater variability during the spring bloom than during the rest of the year (Fig. 6F). Annual mean NCPd[b_{bp}] was 0.11 g C m$^{-2}$ d$^{-1}$ and equal to the spring mean, which is almost an order of magnitude lower than NCPd[c_p] for the same period. The range of NCPd[b_{bp}] was also much lower, varying between −2.6 and 1.7 g C m$^{-2}$ d$^{-1}$. Overall, the reduced seasonal variations in NCPd[b_{bp}] and NCPd[b_{bp}] reflect the lack of seasonal dependency of the diel b_{bp} cycles. Similarly, b_{bp}-based gross community production estimates show a weaker springtime increase in mean and variance around the mean than for c_p (Fig. 6G,H). Highest annual 10 d mean GCP[c_p] attained was 2.02 g C m$^{-2}$ d$^{-1}$, which occurred during late-March to early-April, toward the end of the peak in NCPd[c_p]. This period shows the greatest variability in GCP[c_p] and, to a lesser degree, in GCP[b_{bp}]. Overall, all three estimates of...
community production based on bbp-derived POC show much less intraseasonal and interseasonal variation and lower amplitude than those derived from cp.

Linear regressions between community production estimates based on either IOP further revealed the intraseasonal variability of these estimates (Fig. 7). Significant regressions were found for the relationships between NCP\(_{\text{bbp}}\) and NCP\(_{\text{cp}}\), NCP\(_{\text{d}}\)(\(_{\text{bbp}}\)) and NCP\(_{\text{d}}\)(\(_{\text{cp}}\)), and GCP\(_{\text{bbp}}\) and GCP\(_{\text{cp}}\) for pooled data as well as for individual seasons. Only for GCP estimates during the decline was there no significant relationship between estimates based on \(c_p\) and those based on bbp. Overall, out of the three metrics tested, NCP showed the least amount of correlation between its estimates based on \(c_p\) and bbp (Fig. 7A). Pooling all data, there was only 24.0% of shared variance between NCP\(_{\text{cp}}\) and NCP\(_{\text{bbp}}\), though the regression itself was significant (Table 4). The highest shared variance between estimates was obtained during the bloom (44.1–66.7%), while the lowest were found for the decline (1.5–18.3%). For the decline period the slope of the regression was also considerably lower than the other seasons (Fig. 7).

Having recognized the differences between the seasonal cycles observed for the community production metrics based on either IOP, in order to understand which, if any, conforms to our current understanding of seasonal biogeochemical dynamics at BOUSSOLE, this seasonality must be compared with more traditional biogeochemical estimates. NCP\(_{\text{d}}\)(\(_{\text{bbp}}\)) was compared with two chlorophyll-based models of ocean primary production. Two main differences exist between the techniques: they are forced by different biomass proxies and they represent different biological processes. Results from Fig. 5 have already indicated that the relationship between Chl \(a\) and \(c_p\) may

Table 2. Seasonal dependence of the diel variations of both \(c_p\) and bbp from sunrise to sunset and from one sunrise to the next calculated in terms of percentage change, absolute change, and net (or daytime net) community production. One-way ANOVA was performed to test for seasonal dependence, while \(t\)-tests were then used to determine the significant differences for each pair of seasons (B, bloom; D, decline; M, mixing; O, oligotrophy). Test statistics (\(F\) for ANOVA, \(t\) for \(t\)-tests), \(p\) and degrees of freedom (df) are shown and significant differences are marked in bold.

<table>
<thead>
<tr>
<th>Fraction of day (k)</th>
<th>Test</th>
<th>Percentage change</th>
<th>Absolute change</th>
<th>NCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F) or (t)</td>
<td>(p)</td>
<td>df</td>
<td>(F) or (t)</td>
</tr>
<tr>
<td>bbp sunrise to sunset</td>
<td>ANOVA</td>
<td>3.63</td>
<td>0.013</td>
<td>3703</td>
</tr>
<tr>
<td></td>
<td>B vs. D</td>
<td>2.17</td>
<td>0.033</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>B vs. M</td>
<td>1.6</td>
<td>0.112</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>B vs. O</td>
<td>2.71</td>
<td>0.010</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>D vs. M</td>
<td>−0.59</td>
<td>0.557</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>D vs. O</td>
<td>0.28</td>
<td>0.779</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>M vs. O</td>
<td>0.99</td>
<td>0.321</td>
<td>155</td>
</tr>
<tr>
<td>bbp sunrise to sunrise</td>
<td>ANOVA</td>
<td>0.67</td>
<td>0.571</td>
<td>3703</td>
</tr>
<tr>
<td></td>
<td>B vs. D</td>
<td>1.15</td>
<td>0.253</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>B vs. M</td>
<td>0.43</td>
<td>0.669</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>B vs. O</td>
<td>1.05</td>
<td>0.301</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>D vs. M</td>
<td>−0.75</td>
<td>0.452</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>D vs. O</td>
<td>−0.46</td>
<td>0.647</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>M vs. O</td>
<td>0.57</td>
<td>0.573</td>
<td>154</td>
</tr>
<tr>
<td>cp sunrise to sunset</td>
<td>ANOVA</td>
<td>10.4</td>
<td>0.000</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>B vs. D</td>
<td>2.66</td>
<td>0.009</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>B vs. M</td>
<td>2.38</td>
<td>0.020</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>B vs. O</td>
<td>3.03</td>
<td>0.004</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>D vs. M</td>
<td>−0.6</td>
<td>0.549</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>D vs. O</td>
<td>0.25</td>
<td>0.804</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>M vs. O</td>
<td>1.15</td>
<td>0.251</td>
<td>168</td>
</tr>
<tr>
<td>cp sunrise to sunrise</td>
<td>ANOVA</td>
<td>4.97</td>
<td>0.002</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>B vs. D</td>
<td>2.04</td>
<td>0.044</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>B vs. M</td>
<td>1.73</td>
<td>0.087</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>B vs. O</td>
<td>1.89</td>
<td>0.063</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>D vs. M</td>
<td>−0.73</td>
<td>0.464</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>D vs. O</td>
<td>−0.74</td>
<td>0.462</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>M vs. O</td>
<td>0.17</td>
<td>0.861</td>
<td>167</td>
</tr>
</tbody>
</table>

Table 3. Analogous statistics to Table 2 but for the seasonal dependence of gross community production determined using either bbp or cp.
not entirely be linear and may in fact vary with community composition and seasonally. Phenological differences between NCPd and estimates of primary production were therefore expected. The mean seasonal cycle of NCP[d_{cp}] was very similar, however, to that of primary production for the two models tested, both in terms of amplitude and phenology. For most of the year NCP[d_{cp}] was less than PPVGPM and slightly greater than PPM91 (Fig. 8). Only during July–September is NCP[c_{p}] greater than both chlorophyll-based estimates of primary production.

Diel cycles of net community production—Although calculated from diel variations in IOPs, the estimates of NCPd shown above are daily totals dependent solely on sunrise, sunset, or maximal measurements and therefore can yield no information as to the diel cycles of productivity themselves. By considering finer-scale temporal variations in the IOPs, a higher resolution of the diel changes in POC is obtained, which in turn allows for examination of the diel characteristics of net community production.

Throughout the time series, c_{p} was observed to increase steadily from sunrise, peak about two-thirds of the temporal gap between midday and sunset, and then decrease steadily. During oligotrophy and mixing, there is no net change in c_{p} over 24 h, while c_{p} increases on average by 8.1% and decreases by 1.2% during bloom and decline seasons, respectively. During the decline of the bloom, the peak in c_{p} also occurred a few hours earlier. These seasonal differences in c_{p} have a predictable influence on NCP[c_{p}] diel cycles.

Diel cycles of NCP[c_{p}] show relatively low intraseasonal variability, particularly during oligotrophic and mixing seasons (Fig. 9). A crude measurement of this variability is the 10–90 interpercentile range (IPR) relative to the amplitude of diel cycle. During the decline of the bloom, mixing, and oligotrophy, the ratio between the mean interpercentile range and the maximum diel range is equal to 1.47–1.50. This ratio is only slightly higher during bloom proliferation (1.74). During the bloom, maximum variability in NCP[c_{p}] occurred prior to solar noon, with a 30% increase in IPR for k between 0.13 and 0.25 (ca. 0.025 g C m^{-2} h^{-1}), whereas during the decline the IPR was 25% greater for between 0.38 and 0.48. The IPR was relatively constant throughout the mixing and oligotrophic diel cycles.

In accordance with previous observations, the greatest daytime NCP[c_{p}] was recorded for the bloom proliferation (peak of mean cycle at 0.0069 g C m^{-2} h^{-1}) with intermediate values during the bloom decline (0.0028 g C m^{-2} h^{-1}) and greatly reduced values during mixing (0.0016 g C m^{-2} h^{-1}) and oligotrophy (0.0012 g C m^{-2} h^{-1}).

By comparison, NCP[b_{bp}] showed much greater variability relative to the range of mean diel variations.
Fig. 6. Seasonality of the daily mean of IOPs (A) \(c_p \) and (B) \(b_{bp} \), and three estimates of community production, NCP, NCPd, and GCP calculated from temporal evolution of \(c_p \) (C, E, and G, respectively) and \(b_{bp} \) (D, F, and H). Data are shown by year with a 10 d running mean (solid line) and standard deviations (dotted line) across the whole time series. (D, F) running means are also shown beneath each graph with an expanded y-axis for clarity.
Indeed, for all four seasons the ratio between IPR and diel range was greater than 3.1 (double that of NCPh\[cp\]) and reached 5.9 during mixing when the mean amplitude of diel variations was particularly low. This was primarily due to the low amplitude of mean diel variations, which was 2.3 (for oligotrophy) to 5.5 (for the bloom) times lower than for NCPh\[cp\]. Accordingly, maxima of the four mean diel cycles of NCPh[bpp] were of just 0.0013 (bloom), 0.0008 (decline), 0.0004 (mixing), and 0.0005 (oligotrophy) g C m\(^{-2}\) h\(^{-1}\). For all four seasons, IPR was much greater during daytime in general, representing a 30\% increase over nighttime IPR for bloom, decline, and mixing seasons and a 67\% increase during oligotrophy.

Diel cycles of NCPh[\([c_p]\)] show remarkable consistency in timing between seasons (Fig. 11A). The daytime peak occurred a little before solar noon (ca. \(k = 0.20\)) with little variation for \(k\) between 0.10 and 0.30. Pairwise Kuiper's \(V\)-tests (for cyclic data; Kuiper 1960) between seasons revealed no significant seasonal differences of the timing of the diel maximum (\(V < 0.160, 0.105 < p < 0.719\)). The maximal rate of decrease of NCPh[\([c_p]\)] during all seasons was observed after \(k = 0.40\), while the diel minima were consistently recorded just after sunset, following which NCPh[\([c_p]\)] increased steadily during hours of darkness. Conversely, strong interseasonal differences in the NCPh[bpp] diel cycles were evident (Fig. 11B). Statistical analysis reveals significant differences in the timing of the diel NCPh[bpp] maxima between the bloom seasons and those of mixing (\(V = 0.347, p = 0.019\)) and oligotrophy (\(V = 0.449, p < 0.001\)) as well as between oligotrophy and mixing (\(V = 0.313, p < 0.001\)). The peak during mixing occurred several hours before that of oligotrophy, itself occurring hours before the afternoon peak during blooms. These results indicate that even though there may not be seasonal differences in the total daytime net community production derived from bbp, there may be significant differences in the timing of the diel production cycles.

Discussion

Time scales of particulate variability at BOUSSOLE—Across the 6 yr time series, the principal mode of variation of both \(c_p\) and \(b_{bp}\) was seasonal in accordance with annually recurrent vernal phytoplankton blooms with occasional other increases such as during autumn 2009. Throughout the rest of the year, however, diel variations are often greater than variations in the daily mean from one day to the next. During analysis, data were filtered for strong advection events on the basis of salinity and temperature time series and sensor depth. Therefore the assumption is made that the diel cycles in \(c_p\) and \(b_{bp}\) obtained here are not significantly affected by diurnal changes in the mixed layer depth and essentially result from biological activity. This hypothesis is supported by Gernez et al. (2011), who observed only ca. 2\% differences in mean \(c_p\) between estimates of fixed and variable mixed layer depth.

The diurnal increase of \(c_p\) results from the accumulation of intracellular carbon associated with photosynthetic processes, which is coupled with changes in phytoplankton properties, particularly an increase in refractive index and size (Siegel et al. 1989; Stramski and Reynolds 1993; Claustre et al. 2002). Conversely, losses of particulate matter occur throughout the day due to phytoplankton respiration and excretion, cell division, and cell mortality through grazing activity and viral lyses (Cullen et al. 1992; Stramski and Reynolds 1993). In accordance with replete light and nutrient conditions, the amplitude of these cycles is highest during the bloom when phytoplankton, which show the greatest tendency towards diel variation, contribute the greatest proportion of \(c_p\) variability (Fig. 4A). The
amplitude and timing of the backscattering also showed a marked difference during the annual spring bloom, though the increase in amplitude during the bloom was only slight compared with that of \(c_p \).

Both \(c_p \) and \(b_{bp} \) co-vary with the concentration of particles, which in regions of low concentrations and low scattering from inorganic matter have been used as proxies for POC (Gardner et al. 2006; Stramski et al. 2008; Bishop 2009). However, \(c_p \) and \(b_{bp} \) differ with respect to the size of particles they are most influenced by. While Mie scattering theory suggests \(b_{bp} \) is dominated by submicron particles (Vaillancourt et al. 2004) and phytoplankton are not thought to be a major contributor to \(b_{bp} \) (Stramski and Kiefer 1991), laboratory studies have shown a much larger effect of phytoplankton on \(b_{bp} \) with up to 70% of \(b_{bp} \) variability associated with changes in phytoplankton abundance (Dall’Olmo et al. 2009; Martinez-Vicente et al. 2012). Loisel et al (2007) showed that in Case 1 waters, it was the slope of the particle size distribution (and not the refractive index) that was the predominant factor controlling the temporal variability in \(b_{bp} \), which has also been observed at BOUSSOLE (Kheireddine and Antoine 2014).

It is likely that the first driver of diel particle growth is phytoplankton, yet small heterotrophs (0.1–10 \(\mu \)m in size) have been shown to exhibit diel cycles of activity (Mével et al. 2008) and contribute significantly to the \(c_p \) diel cycle (Oubelkheir and Sciandra 2008). Heterotrophic bacteria, in particular, might explain a third of the spatial variability of \(c_p \) in oceanic regions (Montes-Hugo et al. 2009). Separating the diel effects of phytoplankton and heterotrophs is further complicated by the tight synchronicity between the photosynthetic extracellular release of organic material and bacterial consumption as observed for instance in the Mediterranean Sea (Gasol et al. 1998; Mével et al. 2008) and the North Pacific Ocean (Church et al. 2004). Insufficient data were available here to fully explain the causes of these seasonal variations and differences between both optical properties.

Differences between biogeochemical proxies for phytoplankton carbon—Backscattering showed a weak power-law relationship with Chl \(a \), consistent with observations in the north polar Atlantic (Stramska et al. 2003), the south Pacific gyre (Huot et al. 2008), and early BOUSSOLE observations (Antoine et al. 2011). Beam attenuation varied linearly with Chl \(a \) in agreement with observations by Behrenfeld and Boss (2006). Under high concentrations of microplankton, \(c_p \) and, to a lesser extent, \(b_{bp} \) were greater than could be predicted by the total relationship with Chl \(a \). Although this represents only a small number of observations, this could be indicative of higher carbon to chlorophyll ratios for the larger size classes as well as the larger cells not being well represented by \(b_{bp} \). Aside from size structure considerations of relating each IOP to phytoplankton carbon, variability of the C:Chl \(a \) ratio has been attributed to physiological changes such as photoacclimation (Behrenfeld et al. 2005) as well as community composition (Whitmire et al. 2010). Owing to these and other processes (e.g., package effect), the...
historical use of Chl a as a proxy of phytoplankton biomass or production has been called into question (Marra et al. 2007). These results highlight that all three parameters differ in the processes and particles they are influenced by, and any modeled relationships between them must take into account the scales of variation of such processes.

Daily production from POC—Knowledge of the bbp vs. cp relationship in the open ocean is limited because of the few, albeit growing, number of concurrent measurements. Comparable diel and seasonal changes in cp and bbp would allow them to be used interchangeably to derive information on the particulate pool and thus to estimate net community production of the ecosystem (Siegel et al. 1989; Claustre et al. 2008). Reasonably good correlations have previously been observed between cp and bbp (Dall’Olmo et al. 2009; Westberry et al. 2010; Antoine et al. 2011). Here also, we found relatively good correlations between cp and bbp daily means (Fig. 6A, B). Such results lend credence to the possibility of deriving cp from remote sensing observations (Stramska and Stramski 2005) such as is already the case for bbp. Yet, at BOUSSOLE, cp and bbp have been shown to display significant differences in the timing and amplitude of their diel cycles (Fig. 4). Outside bloom proliferation, maximal bbp values occur earlier than those of cp, while the amplitude of the diel cycle is substantially lower for bbp. Furthermore, the relationship between cp and bbp appears dependent on the trophic status with a lower slope during bloom collapse than bloom proliferation (Fig. 5C). For these reasons, we found clear differences between estimates of community production based on either IOP.

At a first glance, the significant regressions (Table 4) observed for most production metrics (for both pooled data and individual seasons) suggest bbp could be used to obtain estimates of net, daytime net, and gross community production similar to those calculated from diel variation in cp. However, several observations suggest bbp-derived community production metrics differ substantially from those based on cp: (1) the weak slope of the regressions (Fig. 7), (2) the weak shared variance between daily production metrics (Table 4), and (3) the differing mean seasonal cycles (Fig. 6C–H) indicate that the metrics used here vary between both IOPs. Furthermore the agreement between cp and bbp-derived metrics was largely seasonally dependent. For both CP[cp] and CP[bbp] greatest variability was found during the spring bloom proliferation and the greatest shared variance was found during this period.
Fig. 10. Same as Fig. 9 for NCPh calculated from bbp. NCPh bins are of (A, B) 0.0004 and (C, D) 0.0002 g C m\(^{-2}\) h\(^{-1}\).
Diel cycles of community production—The shape and timing of the diel cycles of NCPh[\(c_p\)] agrees with earlier observations (Gernez et al. 2011) of the diel cycles in \(r\) (the rate of change of \(c_p\)) but differs from previous observations and models (Siegel et al. 1989; Cullen et al. 1992; Marra 1997). Unlike the later studies on the rate of change of \(c_p\), the amplitude of NCPh was not synchronous with PAR. Maximal production occurred before noon in all seasons, and production became negative before sunset. This is consistent with laboratory observations of \(c_p\) (Stramski and Reynolds 1993) and phytoplankton photosynthesis (Harding et al. 1981; Prezelin 1992). NCPh[\(c_p\)] was in fact lowest around sunset, with a characteristic dip in production over a 1–2 h period. This could be related to phasing of phytoplankton cellular division or diel variations in grazing pressure. Phasing of cell division is linked to growth rates and occurs when the average population growth rate is less than or equal to one doubling per day during a defined interval relative to the light and dark cycle (Vaulot and Chisholm 1987), although this is thought to vary between species (Brunet et al. 2008). Diel activity of zooplankton grazing has also been observed, although grazing pressure is more or less constant during the hours of darkness (Welschmeyer et al. 1984). Following sunset, NCPh[\(c_p\)] remains negative and shows the least amount of intraseasonal variability during nighttime.

The BOUSSOLE time series has permitted the characterization of IOP variations with high temporal resolution across several annual cycles. This study has demonstrated the use of high-resolution beam attenuation measurements for investigating carbon accumulation of the particulate assemblage. In these Case 1 waters, the relative lack of inorganic particles has facilitated the interpretation of these cycles as a result of organic growth, respiration, division, and consumption. Yet insufficient concomitant measurements of the biological composition and size were available to elucidate exactly what part of the particulate assemblage was being observed here—and thus which components of the biota were driving either \(c_p\) or \(b_{pp}\) variations. Furthermore, this study was restricted to the predominantly oligotrophic BOUSSOLE waters. Areas of basin-scale blooms or substantial upwelling, for instance, may have sufficient diel changes in \(b_{pp}\) to allow for \(b_{pp}\)-based determinations of community production. It is clear that further research is necessary if particulate backscattering is to be used to infer short-term temporal variations in organic carbon. With recent advances in automated platforms and sensors measuring phytoplankton composition (Sosik and Olson 2007) or particle size distribution (Reynolds et al. 2010), our ability to understand circadian rhythms in oceanic ecosystems is only improving.

Acknowledgments

We are grateful to the Bouée pour l’Acquisition de Séries Optiques à Long Terme (BOUSSOLE) technical staff for their work in performing laboratory analyses, buoy deployments, and monthly cruises, and to the captains and crews of RVs Tethys-II, Antea, and Europe. In particular, thanks go to Emilie Diamond and Mehle Golbol for the high-performance liquid chromatography pigment analyses, Vincenzo Vellucci for the optical data calibration, and Bernard Gentili for the photosynthetically active radiation processing. This research contributed to the Bio-Optics and Carbon Experiment (BIOCAREX) project, which is funded...
by the Agence Nationale de la Recherche (ANR, Paris) and to the BOUSSOLE project. Financial, technical, and logistical support to the BOUSSOLE project was provided by the Centre National d’Études Spatiales (CNES), the Centre National de la Recherche Scientifique (CNRS), the European Space Agency (ESA), the Institut National des Sciences de l’Univers (INSU), the National Aeronautics and Space Administration (NASA), the Observatoire Océanologique de Villefranche sur Mer (OOV), and the Université Pierre et Marie Curie (UPMC).

References

Associate editor: Heidi M. Sosik

Received: 10 February 2014
Accepted: 26 August 2014
Amended: 28 August 2014